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are already present in a population.

* Relies on an evolutionary algorithm to
select for high-quality & diverse molecules.

* Periodically prunes the population based
on Pareto rank; survivors make up the
next generation.

* Adjusts the chances of a survivor being
selected in the next round of molecule
generation based on its fithess & how
many children it produced.

« Can use a wide range of objective
functions (including ones external to
the program) and filters to steer selection.

* |s designed to provide ideas for med

chemists to work from as well as

opportunities for them to reshape output
molecules on the fly.

AIDD does not:
* Use deep neural networks to generate or
evaluate candidate molecules.
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2. run final HTPK simulations
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*AIDD is a module of ADMET Predictor®,

which is distributed by Simulations Plus, Inc.
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generate new molecules from ones tha
are already present in a population.

* Relies on an evolutionary algorithm to
select for high-quality & diverse molecules.

* Periodically prunes the population based
on Pareto rank; survivors make up the
next generation.

* Adjusts the chances of a survivor being
selected in the next round of molecule
generation based on its fithess & how
many children it produced.

« Can use a wide range of objective
functions (including ones external to
the program) and filters to steer selection.

* |s designed to provide ideas for med
chemists to work from as well as
opportunities for them to reshape output
molecules on the fly.

AIDD does not:
* Use deep neural networks to generate or
evaluate candidate molecules.
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A member x; of a set is dominated by another member
x; of that set unless x; is superior to x; with respect to
some Pareto objective attribute.

A (sub)set is Pareto optimal when no member is
dominated by any other member.

The Pareto rank r of x;is 1 plus the number of Pareto
optimal subsets that must be removed from a set
before x;is Pareto optimal in the residual set.2

The plot at right shows the first five Pareto ranks
for the set of literature TzPs that are “hit” by the
consensus “active” scaffold.

The two attributes considered here were:

» experimental log K; with respect to malarial
dihydroorotate dehydrogenase (PDHODH)

» an ADMET Risk score® based on 22 fuzzy-logic rules calibrated
against a reference set of oral drugs, 10% of which “break” > 7

aSee, for example: Abdou et al., 12th Euro Conf Evolutionary Computation in
Combinatorial Optimization (EvoCOP) 2012, Spain. 194-205 (hal-00940119)

bM Lawless et al., Handb Exp Pharmacol 2016, 232, 139-168
(doi: 10.1007/164 2015 _23)
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x; of that set unless x; is superior to x; with respect to

some Pareto objective attribute.

A (sub)set is Pareto optimal when no member is
dominated by any other member.

The Pareto rank r of x;is 1 plus the number of Pareto

optimal subsets that must be removed from a set
before x;is Pareto optimal in the residual set.2

The plot at right shows the first two Pareto ranks
for the set of literature TzPs that are “hit” by the
consensus “active” scaffold.

The three attributes considered here were:

» experimental log K; with respect to malarial
dihydroorotate dehydrogenase (PDHODH)

 ADMET Risk
+ estimated synthetic difficulty (SynthDiff)2

23 la Ertl & Schuffenhauer, J Cheminformatics 2009, 1, 8

(doi: 10.1186/1758-2946-1-8)
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Primary filters to check scaffold and weed out problematic (“undruglike”)
substructures

1
* log K" model from Clark et al. (JCAMD 2020, 34, 1117-1132; doi: 10.1007/s10822-020-00333-x)
gn

« ANNE model based on 89 diverse DHODH inhibitors, 42 of which were 2-unsubstituted TzPs
« SEP +0.5 log units; capped at -7.4 minimum

 Bioavailability from ADMET Predictor’'s HTPK module: %Fb -

» estimated based on 1 mg oral dose for 70 kg human; capped at 90% max

» Synthetic difficulty score augmented with “toxicophoric” penalties: SynthDiff+
» Capped at a minimum of 2

« AIDD Risk: a reweighted version of ADMET Risk with broadened thresholds

« Create an initial population of 500 molecules; create 500 new ones per generation;
and keep at least 500 per generation after the 100" (or half-way through the run)

* Run for 500 or 50 generations
 %Fb, ADMET Risk, log K;and “simple” SynthDiff were used for post-processing

* minimum of 70% and maxima of 6, -7.2, and 5, respectively, yielded ~300 products per run
» “post” out-of-scope penalties are less harsh than those that were used during molecular evolution

Objective functions
used for Pareto
ranking within the
evolutionary cycle
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Examples from different product classes
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Structure Identifier |Duplicates [SEED STRUCT... |Generation | RxnCount |Rxns
DSM74 4'-CF3 2 291,142

Duplicate |DSM74 4'-CF3 97,47,71,139,91,138
of 542

A

1089 Duplicate |DSM75 3'-Cl 138,107,5,61
® N- of 542

“N

we)

RN

Wolll 3337  Duplicate [DSM75 3'-Cl 92,97,138,139,110,61,78,141
O of 542

"

< 25412 DSM74 4'-CF3 86,90,54,85,68,142,35,85,80,54

4,

% ol 148002  Duplicate [DSM74 4'-CF3 86,47,54,89,78,81,83,138,54,78,80,54,84,85,55,54,54
ik of 25412

a,

Duplicate |DSM75 3'-Cl 138,95,16,89,15,84,138,89,85,78,68,54,68,138,85,35,36,54
of 25412

Duplicate |DSM75 3'-Ci 86,83,79,88,85,54,68,85,53,54,69,142,90,68,54,68,138,80,78,55,68,54
of 25412

DSM74 4'-CF3 86,90,54,85,68,142,81,83,78,138,122,85,92,64,54,69,138,139,79,54,85,55,54,64,82

48552

Duplicate |DSM75 3'-Cl 138,100,80,130,54,91,86,78,68,76,85,54,82,79,55,88,78,138,58,138,82,125,130,84,55,86,78,80,138,122,78,138,86,69....
of 48552

DSM75 3'-CI 92,138,67,138,139,92,78,89,78,85,81,85,54,85,80,54,55,54,139,85,79,

Duplicate |DSM75 3'-Cl 138,115,24,91,85,76,69,58,70,138,85,82,140,78,54,55,54,85,54,36,54,79,35,36,85,54,139,55
of 82679

Duplicate |DSM74 4'-CF3 86,90,54,85,68,142,35,85,80,54,55,35,79,69,54,68,55,78,138,54,80,42,1,85,85,54,36,55
of 82679
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N

Experiment

ID PR 1A® (500) 1B (50) 2A (500) 2B (50)

R2 R3' | R4’ Train rep1 rep2 rep1 rep2 rep1 rep2 rep1 rep2
DSM75 H Cl H + 0-<50 | 0-<50 | 0-<5 | 0-<5
DSM74 | H H CF3 + 5-5 | 0-<50| 0-<50 0-5 0-<5
DSM1 H benzo (naphthyl) + 29-30
DSM89 | H H Cl + 3-15 2-5 3-20
DSM100 | H H ONe " 23-100
DSM156 | H H OCH2Ph + 17 - 500 | 36 - 500 14 - 500
DSM227 | ONMe H Cl - 7-40 11-15
DSM245 | QEt H Cl - 8-50 | 23-45 18-50 [ 14-50 [ 15-50
DSM246 | QEt Cl H -
DSM257 | SMe, H Cl - 27-50 | 5-50 | 6-20 10-20 | 10-50
DSM268 | CH20H H Cl - 4-10
DSM271 | Et H Cl - 4.-50 5-5 11-50 | 6-20 5-50
DSM278 | CH2NHMe H Cl - 25-30
DSM279 | CH2NMe2 H Cl - 21-150 1-5 19-50
DSM282 | CH2NMe2 Cl H - 18 -50
DSM299 | CH20Me H Cl - 5-5 25-35
DSM301 | CH2CH20Me | H Cl - 41-50 | 37-50 16 -50
DSM303 | CH2CH20Me | H CF3 - 38-50
DSM305 | CH20Me H CF3 - 6-15 5-5
DSM307 | iPr. H CF3 - 5-5
DSM309 | iPr. H Cl - 18 -50 8-20 | 13-50
DSM311 | iBu H CF3 - 43-45 5-5

) DSM317 | CH2CH20H H CF3 - 38-45

DSM75 was the seed structure for
Experiments 1A and 1B.

DSM74 was the seed structure for
Experiments 2A and 2B.
Experiments 1A and 2A were run
for 500 generations.

Experiments 1B and 2B were run
for 50 generations.

The first number in each cell is the
generation where the molecule was
originally generated.

The second number in each cell is
the last checkpoint generation in
which the molecule was observed.
A “+” in the “Train” column means
that the compound was part of the
training set for log K%,

IIJ INDIANA UNIVERSITY



A natural metaphor for AIDD’s output: trees
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The heart of AIDD is an evolutionary molecular design engine that:
» randomly selects molecules for mutation from a seeded population;
» generates new analogs by applying randomly selected SMIRKS transforms to them;
« periodically prunes back the population based on Pareto ranking to create each new generation;
» revises roulette wheel weights for surviving molecules based on their fitness.

Primary structural filters are used to require or avoid avoid particular substructures.

HTPK properties, activity models, Risk scores, synthetic difficulty estimates and external
functions can be used as Pareto ranking objectives.

Interactive post-processing with secondary filters is a key part of the workflow.
The output molecules are reasonable from a medicinal chemistry point of view.
The output molecules are structurally diverse but focused into natural subgroups.

Molecular evolution is remarkably consistent overall, shaped more by the Pareto
objectives and constraints than by the seed structure(s) or random number seed used.

Separate runs generally take different paths to produce recurrent molecules.
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