Al-driven drug design (AIDD):

Coupling high-throughput pharmacokinetic simulation (HTPK) to multi-objective molecular evolution of triazolopyrimidine antimalarial leads

Robert D. Clark,

Indiana University, Bloomington

Michael S. Lawless, David W. Miller and Marvin Waldman

Simulations Plus, Inc.

Chicago ACS 2022

What is AIDD and how does it work?

Al-driven Drug Discovery:

- · Is complicated (see left).
- Uses a set of SMIRKS transforms to generate new molecules from ones that are already present in a population.
- Relies on an evolutionary algorithm to select for high-quality & diverse molecules.
- Periodically prunes the population based on Pareto rank; survivors make up the next generation.
- Adjusts the chances of a survivor being selected in the next round of molecule generation based on its fitness & how many children it produced.
- Can use a wide range of objective functions (including ones external to the program) and filters to steer selection.
- Is designed to provide ideas for med chemists to work from as well as opportunities for them to reshape output molecules on the fly.

AIDD does not:

 Use deep neural networks to generate or evaluate candidate molecules.

What is AIDD* and how does it work?

Al-driven Drug Discovery:

- · Is complicated (see left).
- Uses a set of SMIRKS transforms to generate new molecules from ones that are already present in a population.
- Relies on an evolutionary algorithm to select for high-quality & diverse molecules.
- Periodically prunes the population based on Pareto rank; survivors make up the next generation.
- Adjusts the chances of a survivor being selected in the next round of molecule generation based on its fitness & how many children it produced.
- Can use a wide range of objective functions (including ones external to the program) and filters to steer selection.
- Is designed to provide ideas for med chemists to work from as well as opportunities for them to reshape output molecules on the fly.

AIDD does not:

 Use deep neural networks to generate or evaluate candidate molecules.

Example: the antimalarial triazolopyrimidine (TzP) data set

- MA Phillips et al. *J Med Chem* **2008**, *51*, 3649-3653.
- R Gujjar et al. J. Med. Chem 2009, 52, 1864-1872.
- R Gujjar et al. *J Med Chem* **2011**, *54*, 3935-3949.
- JM Coteron et al. *J Med Chem* **2011**, *54*, 5540-5561.
- A Marwaha et al. J Med Chem 2012, 55, 7425-7436.
- X Deng et al. *J Med Chem* **2014**, *57*, 5381-5394.
- MA Phillips et al. Science Translat. Med. 2015, 7, 296ra111-296ra111.
- S Kokkonda et al. *J Med Chem* **2016**, 59, 5416-5431.

Used in building the activity model

© 2022 All rights reserved

Pareto ranking TzPs (2 objectives)

- A member x_i of a set is *dominated* by another member x_j of that set unless x_i is superior to x_j with respect to some Pareto objective attribute.
- A (sub)set is *Pareto optimal* when no member is dominated by any other member.
- The Pareto rank r of x_i is 1 plus the number of Pareto optimal subsets that must be removed from a set before x_i is Pareto optimal in the residual set.^a
- The plot at right shows the first five Pareto ranks for the set of literature TzPs that are "hit" by the consensus "active" scaffold.
- The two attributes considered here were:
 - experimental log K_i with respect to malarial dihydroorotate dehydrogenase (PfDHODH)
 - an ADMET Risk score^b based on 22 fuzzy-logic rules calibrated against a reference set of oral drugs, 10% of which "break" > 7

^aSee, for example: Abdou *et al.*, 12th Euro Conf Evolutionary Computation in Combinatorial Optimization (EvoCOP) **2012**, Spain. 194–205 (hal-00940119)

^bM Lawless et al., Handb Exp Pharmacol **2016**, 232, 139-168

(doi: 10.1007/164_2015_23)

Pareto ranking TzPs (3 objectives)

- A member x_i of a set is *dominated* by another member x_j of that set unless x_i is superior to x_j with respect to some Pareto objective attribute.
- A (sub)set is *Pareto optimal* when no member is dominated by any other member.
- The Pareto rank r of x_i is 1 plus the number of Pareto optimal subsets that must be removed from a set before x_i is Pareto optimal in the residual set.^a
- The plot at right shows the first two Pareto ranks for the set of literature TzPs that are "hit" by the consensus "active" scaffold.
- The **three** attributes considered here were:
 - experimental log K_i with respect to malarial dihydroorotate dehydrogenase (*Pf*DHODH)
 - ADMET Risk
 - estimated synthetic difficulty (SynthDiff)a

^a à la Ertl & Schuffenhauer, J Cheminformatics **2009**, *1*, 8 (doi: 10.1186/1758-2946-1-8)

Models & settings used for illustrative TzP AIDD runs

- Primary filters to check scaffold and weed out problematic ("undruglike") substructures
- log K_i^{gen} model from Clark et al. (JCAMD **2020**, 34, 1117-1132; doi: 10.1007/s10822-020-00333-x)
 - ANNE model based on 89 diverse DHODH inhibitors, 42 of which were 2-unsubstituted TzPs
 - SEP ±0.5 log units; capped at -7.4 minimum
- Bioavailability from ADMET Predictor's HTPK module: %Fb

estimated based on 1 mg oral dose for 70 kg human; capped at 90% max

- Synthetic difficulty score augmented with "toxicophoric" penalties: SynthDiff+
 - Capped at a minimum of 2
- AIDD Risk: a reweighted version of ADMET Risk with broadened thresholds
- Create an initial population of 500 molecules; create 500 new ones per generation; and keep at least 500 per generation after the 100th (or half-way through the run)
- Run for 500 or 50 generations
- %Fb, ADMET Risk, log K_i and "simple" SynthDiff were used for post-processing
 - minimum of 70% and maxima of 6, -7.2, and 5, respectively, yielded ~300 products per run
 - "post" out-of-scope penalties are less harsh than those that were used during molecular evolution

Objective functions used for Pareto ranking within the evolutionary cycle

Mechanistic High-Throughput Pharmacokinetic Simulation (HTPK)

GastroPlus® ACAT™ Model* + Compartmental (Minimal PBPK) Model*

Population growth across generations

1000 150 Ranks 2 & 3 allowed to survive 125 800 100 spunodway 75 New Combonnds Total Compounds 600 Rep 1 Total Rep 2 Total 400 o Rep 1 New Rep 2 New **DSM74** 200 (seed) 25 200 300 400 500 100 Generation

Minimum population size (500) takes effect

Minimum population size (500) takes effect

© 2022 All rights reserved

Pairwise progress on Pareto objectives (by origin)*

Pairwise progress on Pareto objectives (by extinction)

Examples from different product classes

© 2022 All rights reserved **W** INDIANA UNIVERSITY

Products are structurally diverse, even early on

Distribution of AIDD products becomes more focused in mid-run

Different seeds yield similar final distributions of products

A molecule can be "born" at different times in different runs

A good molecule can be "born" at different times in different runs

Source: Gen 500 compounds from 1A and 2A replicate experiments after removal of compounds with out-of-scope activity predictions but before application of any secondary filters.

Molecular evolution can be complicated – very complicated...

Structure	Identifier	Generati	GenZ	RxnCou	Rems	59 Arom_6_ring_to_5(1)
HN O	6470	13	50	10	88,69,90,138,78,86,54,78,80,54	60 Arom_6_ring_to_5(2) 61 Arom_5_ring_to_6 62 Increase_ring_size 63 Decrease_ring_size
N N N	10239	21	100	12	88,69,90,138,78,86,54,78,80,54,90,68	64 Change_ring_topology(1) 65 Change_ring_topology(2) 66 Shift_ring_substituents(1) 67 Shift_ring_substituents(2)
-6-N-N-S	6694	14	50	10	88,69,90,138,78,86,54,78,80,85	68 Shift_ring_substituents(3) 69 Shift_ring_substituents(4) 70 Single_to_double_bond 71 Double_or_triple_to_single_bond
- NN N	18764	38	50	11	88,69,90,138,78,86,54,78,80,85,81	72 Aromatic_to_single_bond 73 Triple_to_double_bond 74 Aromatize_6-membered_ring 75 Aromatize_5-membered_ring
HN D Br	13610	28	500	11	88,69,90,138,78,86,54,78,80,85,84	76 De-aromatize_6-membered_ring 77 De-aromatize_5-membered_ring 78 Non-carbon_to_carbon 79 Non-nitrogen_to_nitrogen
HN O Br	35159	71	500	13	88,69,90,138,78,86,54,78,80,85,84,54,54	80 Non-oxygen_to_oxygen 81 Non-sulfur_to_sulfur 82 Non-fluorine_to_fluorine 83 Non-chlorine_to_chlorine
HO HN O	103538	208	500	18	88,69,90,138,78,86,91,92,138,68,85,18,83,80,5	84 Non-bromine_to_bromine 85 Add_methyl 86 Add_hydroxyl 87 Add_amine 88 Add_fluro
	Structure HN N N N N N N N N N N N N N N N N N N	6470 10239 10239 18764 18764 13610	6470 13 10239 21 10239 21 6694 14 18764 38 13610 28	6470 13 50 10239 21 100 6694 14 50 18764 38 50 13610 28 500	6470 13 50 10 10239 21 100 12 6694 14 50 10 18764 38 50 11 18764 28 500 11 13610 28 500 11	6470 13 50 10 88,69,90,138,78,86,54,78,80,54 10239 21 100 12 88,69,90,138,78,86,54,78,80,54,90,68 6694 14 50 10 88,69,90,138,78,86,54,78,80,85 18764 38 50 11 88,69,90,138,78,86,54,78,80,85,81 13610 28 500 11 88,69,90,138,78,86,54,78,80,85,84 35159 71 500 13 88,69,90,138,78,86,54,78,80,85,84,54,54

Different evolutionary paths lead to the same molecule

Structure	Identifier	Duplicator	SEED STRUCT	Generation Rxn0	Count Pyne		
	542	Duplicates	DSM74 4'-CF3	generation Rxnv	2 91,142		
	342		D3IVI74 4 -CF3	2	2 31,142	542	HŅ
	2422	Duplicate of 542	DSM74 4'-CF3	5	6 97,47,71,139,91,138		
HN O	1089	Duplicate of 542	DSM75 3'-Cl	3	4 138,107,5,61		
N. N	3337	Duplicate of 542	DSM75 3'-CI	7	8 92,97,138,139,110,61,78,141		Br
-(NA)	25412		DSM74 4'-CF3	51	10 86,90,54,85,68,142,35,85,80,54	25412	- HN
-(NA)	148002	Duplicate of 25412	DSM74 4'-CF3	297	17 86,47,54,89,78,81,83,138,54,78,80,54,84,85,55,54,54)-(O
-() D	40938	Duplicate of 25412	DSM75 3'-Cl	82	18 138,95,16,89,15,84,138,89,85,78,68,54,68,138,85,35,36,54		$\hat{\Omega}$
-() O	46847	Duplicate of 25412	DSM75 3'-CI	94	22 86,83,79,88,85,54,68,85,53,54,69,142,90,68,54,68,138,80,78,55,68,54		-N HN
A LINE	48552		DSM74 4'-CF3	98	25 86,90,54,85,68,142,81,83,78,138,122,85,92,64,54,69,138,139,79,54,85,55,54,64,82	48552	
N HAND	78037	Duplicate of 48552	DSM75 3'-CI	157	43 138,100,80,130,54,91,86,78,68,76,85,54,82,79,55,88,78,138,58,138,82,125,130,84,55,86,78,80,	138,122,78,138,86,69,	O _{II}
N N N	82679		DSM75 3'-Cl	166	26 92,138,67,138,139,92,78,89,78,85,81,85,54,85,80,54,55,54,139,85,79,54,54,85,55,55	82679	
N N N N	54341	Duplicate of 82679	DSM75 3'-CI	109	28 138,115,24,91,85,76,69,58,70,138,85,82,140,78,54,55,54,85,54,36,54,79,35,36,85,54,139,55		N N N
VON NOW OF THE PROPERTY OF THE	87078	Duplicate of 82679	DSM74 4'-CF3	175	28 86,90,54,85,68,142,35,85,80,54,55,35,79,69,54,68,55,78,138,54,80,42,1,85,85,54,36,55	TIT	YOUNG.

"Rediscovered" literature triazolopyrimidines

ID	Substituents			Experiment									
					1Aa (500)		1B (50)		2A (500)		2B (50)		
	R2	R3'	R4'	Train	rep1	rep2	rep1	rep2	rep1	rep2	rep1	rep2	
DSM75	Н	CI	Н	+	0 - <50	0 - <50	0 - <5	0 - <5				7.6	
DSM74	Н	Н	CF3	+		100.		5 – 5	0 - <50	0 - <50	0 - 5	0 - <5	
DSM1	Н	benzo (naphthyl)		+	8				20		29 - 30	8	
DSM89	Н	Н	CI	+				3 - 15	100		2 - 5	3 - 20	
DSM100	Н	Н	ΩMe	+	*	23 - 100			- 2		8		
DSM156	Н	Н	OCH2Ph	+	17 - 500	36 - 500			100	14 - 500			
DSM227	QMe	Н	CI	- 5	<u> </u>	E	7 - 40	- 8	20			11 - 15	
DSM245	QEt	Н	CI	2			8 - 50	23 - 45		18 - 50	14 - 50	15 - 50	
DSM246	QEt	CI	Н	- 4	8	E	4	-	20			20	
DSM257	SMe	Н	CI	2		27 - 50	5 - 50	6 - 20			10 - 20	10 - 50	
DSM268	CH2OH	Н	CI	- 5	66	12			30		103	4 - 10	
DSM271	Et	Н	CI	2			4 - 50	5 - 5		11 - 50	6 - 20	5 - 50	
DSM278	CH2NHMe	Н	CI	- 5	100	8	25 - 30		100				
DSM279	CH2NMe2	Н	CI	2	21 - 150		1 - 5					19 - 50	
DSM282	CH2NMe2	CI	Н	- 4		E		- 4	20		8	18 - 50	
DSM299	CH2OMe	Н	CI	2				5 - 5				25 - 35	
DSM301	CH2CH2OMe	Н	CI		66	41 - 50	37 - 50		200		16	16 - 50	
DSM303	CH2CH2OMe	Н	CF3	2			38 - 50						
DSM305	CH2OMe	Н	CF3	- 5	<u> </u>	E	6	6 - 15	20		8	5 - 5	
DSM307	iPr	Н	CF3	2							5 - 5		
DSM309	iRr	Н	CI	7.	6	15	18 - 50	2 8	- St		8 - 20	13 - 50	
DSM311	iBu	Н	CF3	2			43 - 45					5 - 5	
DSM317	CH2CH2OH	Н	CF3	- 5	03	E		38-45	20		12	20 10	

KEY

- DSM75 was the seed structure for Experiments 1A and 1B.
- DSM74 was the seed structure for Experiments 2A and 2B.
- Experiments 1A and 2A were run for 500 generations.
- Experiments 1B and 2B were run for 50 generations.
- The first number in each cell is the generation where the molecule was originally generated.
- The second number in each cell is the last checkpoint generation in which the molecule was observed.
- A "+" in the "Train" column means that the compound was part of the training set for log K_i^{gen}.

A natural metaphor for AIDD's output: trees

Summary

- The heart of AIDD is an evolutionary molecular design engine that:
 - randomly selects molecules for mutation from a seeded population;
 - generates new analogs by applying randomly selected SMIRKS transforms to them;
 - periodically prunes back the population based on Pareto ranking to create each new generation;
 - revises roulette wheel weights for surviving molecules based on their fitness.
- Primary structural filters are used to require or avoid avoid particular substructures.
- HTPK properties, activity models, Risk scores, synthetic difficulty estimates and external functions can be used as Pareto ranking objectives.
- Interactive post-processing with secondary filters is a key part of the workflow.
- The output molecules are reasonable from a medicinal chemistry point of view.
- The output molecules are structurally diverse but focused into natural subgroups.
- Molecular evolution is remarkably consistent overall, shaped more by the Pareto objectives and constraints than by the seed structure(s) or random number seed used.
- Separate runs generally take different paths to produce recurrent molecules.

Thanks to:

Michael S. Lawless
David Miller
Marvin Waldman
Pankaj R. Daga
Robert Fraczkiewicz
Dechuan Zhuang
Jinhua Zhang

drbobclark@gmail.com clarkrod@indiana.edu

Simulations Plus, Inc., makes ADMET Predictor freely available through their University+ academic licensing program and underwrote my ACS attendance.

Thank you for your kind attention!

